Wind Energy for Power Generation
Meeting the Challenge of Practical Implementation
Volume 1 K. R. Rao SPRINGER
K. R. Rao
Wind Energy for Power Generation
Meeting the Challenge of Practical Implementation
Volume 1
K. R. Rao
KRRao- Consulting Brandon, MS, USA
ISBN 978-3-319-75132-0 ISBN 978-3-319-75134-4 (eBook)
https://doi.org/10.1007/978-3-319-75134-4
Library of Congress Control Number: 2018944264
# Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Prologue
The title portrays the intent of this book is to unravel the “Wind Energy for Power Generation – Meeting the Challenge of Practical Implementation” so that “intricacies” involved in making policy decisions for selecting “Wind Energy for Power Generation” around the globe are unraveled. The author recognizes that public policy decisions would involve several layers of details, interknit with multidisciplines, for end users who could be individuals, neighborhood groups, township committees, utilities, or even operators of a national grid.
This publication is divided into seven chapters, first chapter dealing with technical considerations, the second dealing with wind energy economics, and chapters three, four, five, six and seven sequentially deal with socioeconomic factors, geopolitical parameters, environmental impacts, role of conservation and efficiency and leading to public policy implications respectively.
The first chapter containing technical considerations addresses wind power technology in an easily understandable format starting with historical background. Whereas several publications dealing with wind energy have detailed discussions about technical aspects and few inciden- tally address economic aspects, there are practically no books which cover other aspects critical for decision-making process. The technical considerations will provide correlations for making public policy decisions taken at all levels of the government, engineering students, and practicing professionals involved in wind as energy and power generation source.
Economic parameters relevant to practicing professionals and decision makers become the vital components of the decision process which are eloquently covered in second chapter of this book. In addition, few examples for professional engineering examinations are also included. The matrix of the other chapters covered will unravel “comprehensively” all of the details pertaining to socioeconomic parameters, environmental issues and reduction of global warming, geopolitical constraints, and role of conservation that impact public policy decisions. These will be coherently and succinctly paraphrased in this book for the USA as well as the global context. This matrix of coverage is not merely for USA but address developed countries, including Europe, Canada, Japan, and Australasia; developing countries of Asia such as China and India; select Latin American countries such as Brazil and Argentina; as well as Middle East and Africa. Case studies of wind power projects from sources available in public domain such as Canadian, Indian, British, Spanish, and the US wind energy systems, and other global energy systems are succinctly addressed.
The “front matter” and “end matter” of this publication are applicable to all of the seven chapters.
The energy and power generation issues in these current days of globalization do not have national boundaries. The coverage around globe not only envelops diverse interdisciplinary engineering constraints and resource potential of wind for energy and power generation but also delves into optimal techniques to make wind comparable to the conventional energy resources. The discussions throughout the book, provided with pertinent sketches, graphics, equations, tables, several references, and elaborate bibliographical footnotes are meant for further study to probe into related aspects. Immense use of this publication will be for academia due to the rich scholastic coverage of each of the topics. Author with his editorial experience of professional publications in the engineering field has focused on the end users in addition to the libraries of engineering schools, schools of public and international affairs, public policy institutes, and professional societies.
Author does not make any pretext about the textual content in this entire publication. Instead of “reinventing the wheel,” author has researched to explore expert opinions pertaining to each paragraph and topic in this publication. Thus, the reader will find several statements are authenticated by foot notes and citations from scholastic sources throughout the book. As mentioned in all of the chapters, “cherry-picking” has been adopted throughout the text, to assimilate the essence of the viewpoint of eminent practicing professionals involved in wind engineering. In several situations the source for the sentences and paragraphs cited in the text could also pertain to the following text and paragraphs. This way author has avoided repetitions of cited references. For an “in-depth” knowledge of any particular aspect, readers are advised to follow the citations in the footnotes to consult the respective authorities for the aspects covered. All of the chapters have been thoroughly reviewed by at least two independent reviewers.
The reviewers have been selected from fields other than Wind Engineering to avoid “piled higher and deeper” attitude. The reviewers are preeminently qualified engineering professionals whose “outside-the-box” opinion would be valuable for advocating the viewpoint advanced by the author. Each of the reviewer’s bio-data with pictures is included in the “front matter” of this publication.
It is worth mentioning that author feels he is uniquely qualified to address all of the topics covered in this publication. With his multidisciplinary educational qualifications, affiliations to August Professional Societies, and five decades of diverse professional achievements, as accounted in his bio-data, he is justly qualified to write a comprehensive document of energy and power generation from wind resource.
Contents of Volume 1
1 Wind Energy: Technical Considerations. . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Turbine Basics for Power Generation . . . . . . . . . . . . . . . . . . . . . 2
1.2 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Early Developments of Wind for Energy Use . . . . . . . . . . . . . . . . 3
1.2.2 Recent Development of Turbines for Wind Energy . . . . . . . . . . . . 4
1.2.3 Development of Wind Turbine Technology . . . . . . . . . . . . . . . . . 7
1.2.4 Size and Rated Power Output of Wind Turbines Developed Under NASA-Led Program .. . . . . . . . . . . 8
1.3 Wind Regimes, Wind Energy Resources, Potentials, and Limitations . . . . . . 9
1.3.1 Analysis of Wind Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Wind Turbine Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Gust Wind Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Wind Energy Properties and Characteristics and Wind Speed Formulations . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 The Nature of Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Geographical Variation in the Wind Resource . . . . . . . . . . . . . . . 17
1.4.3 Time Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.4 Measurement of Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.5 Anemometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.6 Analysis of Wind Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.7 Statistical Models for Wind Data Analysis . . . . . . . . . . . . . . . . . . 33
1.4.8 Energy Estimation of Wind Regimes . . . . . . . . . . . . . . . . . . . . . . 45
1.5 Wind Turbine Types and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5.1 Turbine Configurations and Wind Turbine Types . . . . . . . . . . . . . 48
1.5.2 Wind Turbine Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.6 Wind Turbine Components and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.6.1 Wind Turbine Technology Including Components of HAWT .. . . . . . . . . . . . . . . . . . . . 56
1.6.2 Technology of HAWT Wind Turbines . . . . . . . . . . . . . . . . . . . . . 60
1.6.3 Design Specification, Design Feasibility of Wind Turbine Systems, and Costs . . . . . . . . 61
1.6.4 Turbine Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.6.5 Rotor Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.6.6 Nacelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.6.7 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.6.8 Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.6.9 Other Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.6.10 Tower Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.6.11 Wind Turbine Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.7 Basic Principles, Concepts, and Kinematics of Wind Energy 83
• 1.7.1 Basic Energy Concepts and Equations 85
1.7.2 Aerodynamic Characteristic of Flow Parameters 86
1.7.3 Angular Momentum and Lanchester-Betz-Joukowsky Limit 88
1.7.4 Basic Energy Conservation Concepts and Equations 92
1.7.5 Basic Equations of Wind Turbine Power and Torque 97
1.7.6 Induction Factors 100
1.8 Aerodynamics of Wind Turbine Blades and Airfoils 104
1.8.1 General Aerodynamic Considerations 104
1.8.2 Airfoils 105
1.8.3 Aerodynamics of Wind Turbine Blades 110
1.8.4 Aerodynamic Forces: Definitions and Practical Meaning of Lift and Drag 116
1.8.5 Effect of Reynolds Number on Lift and Drag Coefficients 130
1.8.6 The Boundary Layer 131
1.8.7 Real Fluids 131
1.8.8 Relative Velocity of Wind 133
1.8.9 Drag-Based Turbines 134
1.8.10 Maximum Power of A Drag-Based Wind Turbine 136
1.8.11 Maximum Power of A Lift-Based Wind Turbine 137
1.9 Blade Design Aspects and Theories 138
1.9.1 Aerodynamic Modeling and Blade Design Theories 138
1.9.2 The Significance of Betz Limit 138
1.9.3 Blade Element Theory: Velocities and Forces for a Blade Element 142
1.9.4 Blade Element Momentum Theory 147
1.9.5 Vertical-Axis Wind Turbines (VAWTs) 151
1.9.6 Blade Design for Modern Wind Turbines: Blade Operational Environment 155
1.10 Rotor and Turbine Design Aspects, Performance Characteristics, and Testing 155
1.10.1 Rotor Blade Theory 155
1.10.2 Determination of Rotor Torque and Power 155
1.10.3 Trends in Approaches to Rotor Design 160
1.10.4 Current Rotor Design Practice 161
1.10.5 Rotor Disk Theory 161
1.10.6 Rotor Design 165
1.10.7 Rotor Performance 169
1.10.8 Estimation of the Turbine Loads 174
1.10.9 Design Constraints 174
1.10.10 Predict Performance 175
1.10.11 Design Evaluation 175
1.10.12 Cost of Components and Overall Cost of Turbine 176
1.10.13 Wind Turbine Design and Testing 176
1.10.14 Sources of Wind Turbine Loads: Types 178
1.10.15 Wind Turbine Standards, Technical Specifications, and Certification 179
1.10.16 Design Conditions of Wind Turbines 181
1.10.17 Design Wind Regimes 182
1.10.18 Design Load Cases 185
1.10.19 Load Scaling Factors 187
1.10.20 Maximum Stresses 188
1.10.21 Blade Natural Frequencies 189
1.10.22 Strip Theory 190
1.11 Wind Electricity Generation Systems 193
1.11.1 Introduction 193
1.11.2 Basics of Electromagnetism 193
1.11.3 Basic Principles of Alternating Current (AC) 194
1.11.4 Basic Principles of Electrical Machines 196
1.11.5 Conversion of Mechanical to Electric Power 198
1.11.6 Wind Turbine Generators 201
1.11.7 How Generators Work 205
1.11.8 Types of Generators Used for Wind Turbines 207
1.11.9 Synchronous Generator 208
1.11.10 Permanent Magnet (PM) Generators 214
1.11.11 Analysis of Synchronous Generator 218
1.11.12 Equivalent Circuit of a Synchronous Generator 220
1.11.13 Power and Torque in Synchronous Generators 226
1.11.14 Measuring Parameters of Synchronous Generator Model 231
1.11.15 Variable-Speed Permanent Magnet Synchronous Generators 234
1.11.16 Direct-Drive Synchronous Generator (DDSG) 236
1.11.17 Wind Turbines Using Induction Generators 237
1.11.18 Asynchronous Generators 241
1.11.19 Variable-Speed Generators 251
1.11.20 Synchronous Generator Rectifiers 252
1.11.21 Synchronous Generator Circuit and Summary 253
1.11.22 Indirect Grid Connection of Wind Turbines 253
1.11.23 Performance of Wind Energy Conversion Systems 255
1.11.24 Gearboxes for Wind Turbines: Why Use a Gearbox? 255
1.11.25 Controlling Power Quality from Wind Turbines 258
1.11.26 Power Curve of the Wind Turbine 258
1.11.27 Power Curve of the Wind Turbine: Using Weibull-Based Approach 262
1.11.28 Power Curve of the Wind Turbine: Using Rayleigh-Based Approach 264
1.11.29 Capacity Factor 265
1.11.30 Synchronous Generator Ratings 265
1.11.31 Synchronous Generator Capability Curves 266
1.11.32 Matching the Turbine with the Wind Regime 268
1.12 Grid Integration and Distribution; Transmission and Power Distribution 270
1.12.1 Grid Connections 270
1.12.2 How the Variability of Wind Energy Is Handled on the Grid 272
1.12.3 Transfer of Electrical Energy to the Grid 275
1.12.4 Collection and Transmission Network 277
1.12.5 Basic Components in a Circuit for Wind Project 279
1.12.6 Transformers for Wind Applications 279
1.12.7 Wind-Plant Interconnection and Transmission Study 280
1.12.8 Transmission and Distribution 281
1.12.9 Standards for Interconnection 284
1.12.10 Interactions Between the Grid and Wind Farm: “Wind Farm Topologies” 287
1.12.11 Grounding for Overvoltage and Lightning Protection 287
1.12.12 Supervisory Control and Data Acquisition (SCADA) Systems 290
1.13 Wind Farms 291
1.13.1 Definitions 292
1.13.2 History 293
1.13.3 List of Large Onshore Wind Farms 294
1.13.4 Why Put Wind Turbines in the Sea 294
1.13.5 Nearshore Wind Power 296
1.13.6 Offshore Wind Farms 296
1.13.7 Economics of Offshore Wind Energy Development 305
1.13.8 Technical Details of Offshore Wind Development 309
1.13.9 Design Environment with Offshore Wind Power 316
1.13.10 Floating Turbines 317
1.13.11 A Wind Vision for a Future of Offshore Wind 325
1.13.12 Deliberations Regarding Factors for Deploying Offshore Wind Energy 326
1.14 Wind Power Generation: Efficiency IN Buildings and Urban Design 330
1.14.1 Small-Sized Wind Turbines 330
1.14.2 Small-Sized Wind Turbines: Usage Markets 333
1.14.3 Small-Scale Wind Turbine Design 337
1.14.4 Small-Scale Wind Turbine Installation 339
1.14.5 Types of Urban Wind Turbines (UWTs) 339
1.14.6 Urban Wind Turbine (UWT) Environmental Effects 341
1.14.7 Technical and Cost Data for Select Urban Wind Turbines (UWTs) 341
1.14.8 Urban Wind Turbine (UWT) Manufacturers 344
1.14.9 Use of Urban Wind Turbine (UWT) is Debatable! 348
1.14.10 Technical Rationale for Urban Wind Turbines (UWTs) 350
1.15 Wind Power in Hybrid and Cogeneration 363
1.15.1 Hybrid Definition 363
1.15.2 Wind–Solar Hybrid Systems 364
1.15.3 Other Wind Hybrid Energy Generations 365
1.15.4 Wind–Solar Hybrid Utility Integration and Storage Systems 368
1.15.5 Hybrid Power Generation and Storage Systems 371
1.15.6 Hybrid Grid Integration 372
1.15.7 Wind–Solar Hybrid Distributed Energy Resources (DER) 374
1.15.8 Hybrid Renewable Energy Systems Case Studies 376
1.15.9 Cogeneration 378
1.16 Wind Energy Advantages and Limitations 379
1.16.1 Wind Energy Technical Advantages 379
1.16.2 Wind Energy Policy Issues Involving Technical Merits 380
1.16.3 Wind Energy Cost Advantage Impact 382
1.16.4 Economic Advantages 384
1.16.5 Wind Energy Environmental Advantages 385
1.16.6 Social Plusses 385
1.16.7 Technical Shortcomings 386
1.16.8 Economic Limitations 386
1.16.9 Environmental Benefits and Shortcomings 387
1.16.10 Social Ills, If Any 388
1.17 Wind Energy Possibilities: Next Generation of Turbines with Advanced Technology 388
1.17.1 Records of Wind Turbines 388
1.18 Summary and Conclusions: Technical Details for Making Public Policy Decisions 421
2 Wind Energy Economics 427
2.1 Précis 428
2.2 Raison D’être 428
2.3 Rationale of Financial Commitments 430
2.3.1 Delineation 430
2.3.2 Capital Costs 430
2.3.3 Recurring Operation and Maintenance (O&M) Costs 442
2.3.4 Productive Costs 447
2.3.5 Revenue Model 453
2.3.6 Projected Costs 458
2.3.7 Future Costs 460
2.3.8 Financial Evaluation 463
2.4 Economic Evaluations for Investment Milieus 464
2.4.1 Simple Interest (SI) 465
2.4.2 Compound Interest (CI) 465
2.4.3 Uniform Gradient Series 465
2.4.4 “Present Worth (Value)” Approach 466
2.4.5 Future Worth Costs 471
2.4.6 Uniform Payment Present Worth Series 472
2.4.7 Uniform Gradient Present Worth Series 472
2.4.8 Example Problems Exemplifying “Present and Future Worth Approaches” 473
2.4.9 Economic Evaluation Methods 474
2.4.10 Cash Flow Method and Cost of Energy (COE) Estimates 477
2.4.11 Cash Flow Activities in Any Plant Including a Wind Power Plant 481
2.4.12 Life Cycle Costing (LCC) Method 483
2.4.13 Net Present Value of Cost or Savings 484
2.4.14 Other Life Cycle Analysis Parameters: r Discount Rate and I General Inflation Rate 488
2.4.15 Benefit–Cost Ratio 488
2.4.16 Levelizing 488
2.4.17 Capital Recovery Factor 489
2.4.18 Electric Utility Models 489
2.5 Funds and Vehicles for Project Investment 491
2.5.1 Sinking Fund 492
2.5.2 Annuities 494
2.5.3 Amortization of Loans and Debt 495
2.5.4 Perpetuities 495
2.5.5 Bonds 495
2.5.6 Subsidies and Grants 499
2.5.7 Community Ownership: Role of Cooperatives 500
2.5.8 Indirect Forms of Investment 502
2.6 Cost Comparison of Investment Strategies 503
2.6.1 Annual Cost and “Equivalent Annuity” 504
2.6.2 Capital Costs 508
2.6.3 Economic Evaluations 511
2.6.4 Comprehensive Economic Evaluation (CEE) 512
2.6.5 Net Present Value (NPV) 513
2.6.6 Rate of Return 516
2.6.7 Simplified Economic Analysis Methods: Simple Payback Method 520
2.6.8 Uniform Annualized Cost 525
2.6.9 Levelized Cost of Energy (LCOE) . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.10 Economic Benefits of Wind Energy . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.11 Break-Even Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
2.6.12 Economic Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 534
2.6.13 Financing Options and Structure for Wind Energy Maintenance Improvements 536
2.7 Issues of Money as a Function of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
2.7.1 Economic Time Life and Depreciation of the Capital . . . . . . . . . . 539
2.7.2 Depreciation and Taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
2.7.3 Depletion of the Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
2.7.4 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
2.7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
2.8 Wind Energy Market Considerations: An Overview . . . . . . . . . . . . . . . . . . 567
2.8.1 Utility-Scale International Wind Energy Market . . . . . . . . . . . . . . 568
2.8.2 Residential Wind Energy Economics . . . . . . . . . . . . . . . . . . . . . . 574
2.8.3 Business and Farm Wind Energy Economics . . . . . . . . . . . . . . . . 575
2.8.4 Urban Wind Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
2.8.5 Land and Offshore Wind Farm Economics . . . . . . . . . . . . . . . . . 595
2.8.6 Utility Economics: Grid Integration . . . . . . . . . . . . . . . . . . . . . . . 601
2.8.7 Global Wind Energy Market: Experience, Solutions, and Methods for the Integration of Wind Power
into Power Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2.8.8 Stock Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
2.9 Impact of Wind Energy on Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
2.9.1 Value of Wind Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
2.9.2 Avoided Cost-Based Value of Wind Energy . . . . . . . . . . . . . . . . 618
2.9.3 Environmental Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
2.9.4 Labor Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
2.10 Wind Energy vis-à-vis Other Energy Sources . . . . . . . . . . . . . . . . . . . . . . . 631
2.10.1 Resources Factors for Resource Comparison . . . . . . . . . . . . . . . . 631
2.10.2 Economic Factors for Comparison of Wind with Other Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
2.10.3 Wind Energy Versus Renewable Energies . . . . . . . . . . . . . . . . . . 642
2.10.4 Other Factors for Consideration . . . . . . . . . . . . . . . . . . . . . . . . . 657
2.10.5 Wind Hybrid Power Generation System . . . . . . . . . . . . . . . . . . . 659
2.11 Vacillations of Wind Energy Economics . . . . . . . . . . . . . . . . . . . . . . . . . . 660
2.11.1 Uncertainty and Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
2.11.2 Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
2.11.3 Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
2.11.4 Regulatory Powers as Incentives . . . . . . . . . . . . . . . . . . . . . . . . . 665
2.12 Application of Methods to Wind Engineering Economics . . . . . . . . . . . . . . 673
2.12.1 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
2.12.2 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
2.12.3 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
2.12.4 Linear Programming (LP) and Optimization Techniques . . . . . . . . 677
2.12.5 Econometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
2.13 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
2.13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
2.13.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
Epilogue 1391
List of Figures 193
List of Tables 1415
References 1419
Index